Branch-and-Bound Applications in Combinatorial Data Analysis [electronic resource] / by Michael J. Brusco, Stephanie Stahl.

Por: Brusco, Michael J [author.]Colaborador(es): Stahl, Stephanie [author.]Tipo de material: TextoTextoSeries Statistics and ComputingEditor: New York, NY : Springer New York, 2005Descripción: XII, 222 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780387288109Trabajos contenidos: SpringerLink (Online service)Tema(s): Statistics | Operations research | Mathematical statistics | Statistics | Statistics and Computing/Statistics Programs | Operations Research/Decision Theory | Operations Research, Mathematical Programming | Statistics for Social Science, Behavorial Science, Education, Public Policy, and LawFormatos físicos adicionales: Sin títuloClasificación CDD: 519.5 Clasificación LoC:QA276-280Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: There are a variety of combinatorial optimization problems that are relevant to the examination of statistical data. Combinatorial problems arise in the clustering of a collection of objects, the seriation (sequencing or ordering) of objects, and the selection of variables for subsequent multivariate statistical analysis such as regression. The options for choosing a solution strategy in combinatorial data analysis can be overwhelming. Because some problems are too large or intractable for an optimal solution strategy, many researchers develop an over-reliance on heuristic methods to solve all combinatorial problems. However, with increasingly accessible computer power and ever-improving methodologies, optimal solution strategies have gained popularity for their ability to reduce unnecessary uncertainty. In this monograph, optimality is attained for nontrivially sized problems via the branch-and-bound paradigm. For many combinatorial problems, branch-and-bound approaches have been proposed and/or developed. However, until now, there has not been a single resource in statistical data analysis to summarize and illustrate available methods for applying the branch-and-bound process. This monograph provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, psuedocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web. Dr. Brusco is a Professor of Marketing and Operations Research at Florida State University, an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America. Stephanie Stahl is an author and researcher with years of experience in writing, editing, and quantitative psychology research.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Cluster AnalysisPartitioning -- An Introduction to Branch-and-Bound Methods for Partitioning -- Minimum-Diameter Partitioning -- Minimum Within-Cluster Sums of Dissimilarities Partitioning -- Minimum Within-Cluster Sums of Squares Partitioning -- Multiobjective Partitioning -- Seriation -- to the Branch-and-Bound Paradigm for Seriation -- SeriationMaximization of a Dominance Index -- SeriationMaximization of Gradient Indices -- SeriationUnidimensional Scaling -- SeriationMultiobjective Seriation -- Variable Selection -- to Branch-and-Bound Methods for Variable Selection -- Variable Selection for Cluster Analysis -- Variable Selection for Regression Analysis.

There are a variety of combinatorial optimization problems that are relevant to the examination of statistical data. Combinatorial problems arise in the clustering of a collection of objects, the seriation (sequencing or ordering) of objects, and the selection of variables for subsequent multivariate statistical analysis such as regression. The options for choosing a solution strategy in combinatorial data analysis can be overwhelming. Because some problems are too large or intractable for an optimal solution strategy, many researchers develop an over-reliance on heuristic methods to solve all combinatorial problems. However, with increasingly accessible computer power and ever-improving methodologies, optimal solution strategies have gained popularity for their ability to reduce unnecessary uncertainty. In this monograph, optimality is attained for nontrivially sized problems via the branch-and-bound paradigm. For many combinatorial problems, branch-and-bound approaches have been proposed and/or developed. However, until now, there has not been a single resource in statistical data analysis to summarize and illustrate available methods for applying the branch-and-bound process. This monograph provides clear explanatory text, illustrative mathematics and algorithms, demonstrations of the iterative process, psuedocode, and well-developed examples for applications of the branch-and-bound paradigm to important problems in combinatorial data analysis. Supplementary material, such as computer programs, are provided on the world wide web. Dr. Brusco is a Professor of Marketing and Operations Research at Florida State University, an editorial board member for the Journal of Classification, and a member of the Board of Directors for the Classification Society of North America. Stephanie Stahl is an author and researcher with years of experience in writing, editing, and quantitative psychology research.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.