Introduction to Smooth Manifolds [electronic resource] / by John M. Lee.

Por: Lee, John M [author.]Tipo de material: TextoTextoSeries Graduate Texts in Mathematics, 218Editor: New York, NY : Springer New York : Imprint: Springer, 2012Edición: 2nd ed. 2012Descripción: XVI, 708 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781441999825Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Global differential geometry | Mathematics | Differential GeometryFormatos físicos adicionales: Sin títuloClasificación CDD: 516.36 Clasificación LoC:QA641-670Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific researchsmooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sards theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Preface -- 1 Smooth Manifolds -- 2 Smooth Maps -- 3 Tangent Vectors -- 4 Submersions, Immersions, and Embeddings -- 5 Submanifolds -- 6 Sard's Theorem -- 7 Lie Groups -- 8 Vector Fields -- 9 Integral Curves and Flows -- 10 Vector Bundles -- 11 The Cotangent Bundle -- 12 Tensors -- 13 Riemannian Metrics -- 14 Differential Forms -- 15 Orientations -- 16 Integration on Manifolds.-17 De Rham Cohomology.-18 The de Rham Theorem -- 19Distributions and Foliations.-20 The Exponential Map.-21 Quotient Manifolds.- 22 Symplectic Manifolds -- Appendix A: Review of Topology -- Appendix B: Review of Linear Algebra -- Appendix C: Review of Calculus -- Appendix D: Review of Differential Equations -- References -- Notation Index -- Subject Index.

This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific researchsmooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer. This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A few new topics have been added, notably Sards theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures. Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.