Projective Duality and Homogeneous Spaces [electronic resource] / by Evgueni A. Tevelev.

Por: Tevelev, Evgueni A [author.]Tipo de material: TextoTextoSeries Encyclopaedia of Mathematical Sciences, Invariant Theory and Algebraic Transformation Groups IV, 133Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: XIV, 250 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540269571Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Geometry, algebraic | Topological Groups | Combinatorics | Global differential geometry | Topology | Mathematics | Algebraic Geometry | Topological Groups, Lie Groups | Differential Geometry | Topology | CombinatoricsFormatos físicos adicionales: Sin títuloClasificación CDD: 516.35 Clasificación LoC:QA564-609Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

to Projective Duality -- Actions with Finitely Many Orbits -- Local Calculations -- Projective Constructions -- Vector Bundles Methods -- Degree of the Dual Variety -- Varieties with Positive Defect -- Dual Varieties of Homogeneous Spaces -- Self-dual Varieties -- Singularities of Dual Varieties.

Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.