Mathematical Implications of Einstein-Weyl Causality [electronic resource] / by Hans-Jȭrgen Borchers, Rathindra Nath Sen.

Por: Borchers, Hans-Jȭrgen [author.]Colaborador(es): Sen, Rathindra Nath [author.]Tipo de material: TextoTextoSeries Lecture Notes in Physics, 709Editor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2006Descripción: XII, 190 p. 37 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540376811Trabajos contenidos: SpringerLink (Online service)Tema(s): Physics | Global differential geometry | Cell aggregation -- Mathematics | Physics | Theoretical, Mathematical and Computational Physics | Manifolds and Cell Complexes (incl. Diff.Topology) | Classical and Quantum Gravitation, Relativity Theory | Differential GeometryFormatos físicos adicionales: Sin títuloClasificación CDD: 530.1 Clasificación LoC:QC19.2-20.85Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Geometrical Structures on Space-Time -- Light Rays and Light Cones -- Local Structure and Topology -- Homogeneity Properties -- Ordered Spaces and Complete Uniformizability -- Spaces with Complete Light Rays -- Consequences of Order Completeness -- The Cushion Problem -- Related Works -- Concluding Remarks -- Erratum to: Geometrical Structures on Space-Time -- Erratum to: Light Rays and Light Cones -- Erratum to: Local Structure and Topology -- Erratum to: Ordered Spaces and Complete Uniformizability -- Erratum to: Spaces with Complete Light Rays -- Erratum to: Consequences of Order Completeness -- Erratum.

The present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics.

ZDB-2-PHA

ZDB-2-LNP

No hay comentarios en este titulo.

para colocar un comentario.