Clifford Algebras and Lie Theory [electronic resource] / by Eckhard Meinrenken.

Por: Meinrenken, Eckhard [author.]Tipo de material: TextoTextoSeries Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 58Editor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013Descripción: XX, 321 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642362163Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Algebra | Topological Groups | Global differential geometry | Mathematical physics | Mathematics | Topological Groups, Lie Groups | Associative Rings and Algebras | Mathematical Applications in the Physical Sciences | Differential Geometry | Mathematical Methods in PhysicsFormatos físicos adicionales: Sin títuloClasificación CDD: 512.55 | 512.482 Clasificación LoC:QA252.3QA387Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartans famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petraccis proof of the PoincarȨBirkhoffWitt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflos theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostants structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his ǣClifford algebra analogueǥ of the HopfKoszulSamelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Preface -- Conventions -- List of Symbols -- 1 Symmetric bilinear forms -- 2 Clifford algebras -- 3 The spin representation -- 4 Covariant and contravariant spinors -- 5 Enveloping algebras -- 6 Weil algebras -- 7 Quantum Weil algebras -- 8 Applications to reductive Lie algebras -- 9 D(g; k) as a geometric Dirac operator -- 10 The HopfKoszulSamelson Theorem -- 11 The Clifford algebra of a reductive Lie algebra -- A Graded and filtered super spaces -- B Reductive Lie algebras -- C Background on Lie groups -- References -- Index.

This monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartans famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petraccis proof of the PoincarȨBirkhoffWitt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflos theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostants structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his ǣClifford algebra analogueǥ of the HopfKoszulSamelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.