Evans, Steven Neil.

Probability and Real Trees cole d'tȨ de ProbabilitȨs de Saint-Flour XXXV - 2005 / [electronic resource] : by Steven Neil Evans. - XI, 201 p. online resource. - Lecture Notes in Mathematics, 1920 0075-8434 ; . - Lecture Notes in Mathematics, 1920 .

Around the Continuum Random Tree -- R-Trees and 0-Hyperbolic Spaces -- Hausdorff and GromovHausdorff Distance -- Root Growth with Re-Grafting -- The Wild Chain and other Bipartite Chains -- Diffusions on a R-Tree without Leaves: Snakes and Spiders -- RTrees from Coalescing Particle Systems -- Subtree Prune and Re-Graft.

ZDB-2-SMA ZDB-2-LNM

Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.

9783540747987

10.1007/978-3-540-74798-7 doi


Mathematics.
Combinatorics.
Geometry.
Distribution (Probability theory).
Mathematics.
Probability Theory and Stochastic Processes.
Combinatorics.
Geometry.

QA273.A1-274.9 QA274-274.9

519.2