Vesentini, E.

Geometry of Homogeneous Bounded Domains [electronic resource] / edited by E. Vesentini. - 307p. online resource. - C.I.M.E. Summer Schools ; 45 . - C.I.M.E. Summer Schools ; 45 .

S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Khler manifolds -- S.G. Greenfield: Extendibility properties of real submanifolds of Cn -- W. Kaup: Holomorphische Abbildungen in Hyperbolische Rume -- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains -- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symȨtriques -- S. Murakami: Plongements holomorphes de domaines symȨtriques -- E.M. Stein: The analogues of Fatouss theorem and estimates for maximal functions.

ZDB-2-SMA

S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Khler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische Rume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symȨtriques.- S. Murakami: Plongements holomorphes de domaines symȨtriques.- E.M. Stein: The analogues of Fatouss theorem and estimates for maximal functions.

9783642110603

10.1007/978-3-642-11060-3 doi


Mathematics.
Differential equations, partial.
Global differential geometry.
Algebraic topology.
Mathematics.
Differential Geometry.
Algebraic Topology.
Several Complex Variables and Analytic Spaces.

QA641-670

516.36