Geometry of Homogeneous Bounded Domains [electronic resource] /
edited by E. Vesentini.
- 307p. online resource.
- C.I.M.E. Summer Schools ; 45 .
- C.I.M.E. Summer Schools ; 45 .
S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Khler manifolds -- S.G. Greenfield: Extendibility properties of real submanifolds of Cn -- W. Kaup: Holomorphische Abbildungen in Hyperbolische Rume -- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains -- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symȨtriques -- S. Murakami: Plongements holomorphes de domaines symȨtriques -- E.M. Stein: The analogues of Fatouss theorem and estimates for maximal functions.
ZDB-2-SMA
S.G. Gindikin, I.I. Pjateckii-Sapiro, E.B. Vinberg: Homogeneous Khler manifolds.- S.G. Greenfield: Extendibility properties of real submanifolds of Cn.- W. Kaup: Holomorphische Abbildungen in Hyperbolische Rume.- A. Koranyi: Holomorphic and harmonic functions on bounded symmetric domains.- J.L. Koszul: Formes harmoniques vectorielles sur les espaces localement symȨtriques.- S. Murakami: Plongements holomorphes de domaines symȨtriques.- E.M. Stein: The analogues of Fatouss theorem and estimates for maximal functions.
9783642110603
10.1007/978-3-642-11060-3 doi
Mathematics. Differential equations, partial. Global differential geometry. Algebraic topology. Mathematics. Differential Geometry. Algebraic Topology. Several Complex Variables and Analytic Spaces.