Fourier Transforms of Invariant Functions on Finite Reductive Lie Algebras [electronic resource] / by Emmanuel Letellier.

Por: Letellier, Emmanuel [author.]Tipo de material: TextoTextoSeries Lecture Notes in Mathematics, 1859Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: XI, 165 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540315612Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Group theory | Mathematics | Group Theory and GeneralizationsFormatos físicos adicionales: Sin títuloClasificación CDD: 512.2 Clasificación LoC:QA174-183Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztigs character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Preface -- Introduction -- Connected Reductive Groups and their Lie Algebras -- Deligne-Lusztig Induction -- Local Systems and Perverse Shaeves -- Geometrical Induction -- Deligne-Lusztig Induction and Fourier Transforms -- Fourier Transforms of the Characteristic Functions of the Adjoint Orbits -- References -- Index.

The study of Fourier transforms of invariant functions on finite reductive Lie algebras has been initiated by T.A. Springer (1976) in connection with the geometry of nilpotent orbits. In this book the author studies Fourier transforms using Deligne-Lusztig induction and the Lie algebra version of Lusztigs character sheaves theory. He conjectures a commutation formula between Deligne-Lusztig induction and Fourier transforms that he proves in many cases. As an application the computation of the values of the trigonometric sums (on reductive Lie algebras) is shown to reduce to the computation of the generalized Green functions and to the computation of some fourth roots of unity.

ZDB-2-SMA

ZDB-2-LNM

No hay comentarios en este titulo.

para colocar un comentario.