Algorithmic Learning Theory [electronic resource] : 17th International Conference, ALT 2006, Barcelona, Spain, October 7-10, 2006. Proceedings / edited by JosȨ L. Balczar, Philip M. Long, Frank Stephan.

Por: Balczar, JosȨ L [editor.]Colaborador(es): Long, Philip M [editor.] | Stephan, Frank [editor.]Tipo de material: TextoTextoSeries Lecture Notes in Computer Science, 4264Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Descripción: XIII, 393 p. Also available online. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540466505Trabajos contenidos: SpringerLink (Online service)Tema(s): Computer science | Computer software | Artificial intelligence | Text processing (Computer science | Computer Science | Artificial Intelligence (incl. Robotics) | Computation by Abstract Devices | Algorithm Analysis and Problem Complexity | Mathematical Logic and Formal Languages | Document Preparation and Text ProcessingFormatos físicos adicionales: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TJ210.2-211.495Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooks
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Editors Introduction -- Editors Introduction -- Invited Contributions -- Solving Semi-infinite Linear Programs Using Boosting-Like Methods -- e-Science and the Semantic Web: A Symbiotic Relationship -- Spectral Norm in Learning Theory: Some Selected Topics -- Data-Driven Discovery Using Probabilistic Hidden Variable Models -- Reinforcement Learning and Apprenticeship Learning for Robotic Control -- Regular Contributions -- Learning Unions of ?(1)-Dimensional Rectangles -- On Exact Learning Halfspaces with Random Consistent Hypothesis Oracle -- Active Learning in the Non-realizable Case -- How Many Query Superpositions Are Needed to Learn? -- Teaching Memoryless Randomized Learners Without Feedback -- The Complexity of Learning SUBSEQ (A) -- Mind Change Complexity of Inferring Unbounded Unions of Pattern Languages from Positive Data -- Learning and Extending Sublanguages -- Iterative Learning from Positive Data and Negative Counterexamples -- Towards a Better Understanding of Incremental Learning -- On Exact Learning from Random Walk -- Risk-Sensitive Online Learning -- Leading Strategies in Competitive On-Line Prediction -- Hannan Consistency in On-Line Learning in Case of Unbounded Losses Under Partial Monitoring -- General Discounting Versus Average Reward -- The Missing Consistency Theorem for Bayesian Learning: Stochastic Model Selection -- Is There an Elegant Universal Theory of Prediction? -- Learning Linearly Separable Languages -- Smooth Boosting Using an Information-Based Criterion -- Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice -- Asymptotic Learnability of Reinforcement Problems with Arbitrary Dependence -- Probabilistic Generalization of Simple Grammars and Its Application to Reinforcement Learning -- Unsupervised Slow Subspace-Learning from Stationary Processes -- Learning-Related Complexity of Linear Ranking Functions.

ZDB-2-SCS

ZDB-2-LNC

No hay comentarios en este titulo.

para colocar un comentario.