Symmetries of Compact Riemann Surfaces [electronic resource] / by Emilio Bujalance, Francisco Javier Cirre, JosȨ Manuel Gamboa, Grzegorz Gromadzki.

Por: Bujalance, Emilio [author.]Colaborador(es): Cirre, Francisco Javier [author.] | Gamboa, JosȨ Manuel [author.] | Gromadzki, Grzegorz [author.]Tipo de material: TextoTextoSeries Lecture Notes in Mathematics, 2007Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: XX, 164 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642148286Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Geometry, algebraic | Group theory | Functions of complex variables | Topology | Mathematics | Functions of a Complex Variable | Algebraic Geometry | Group Theory and Generalizations | TopologyFormatos físicos adicionales: Sin títuloClasificación CDD: 515.9 Clasificación LoC:QA331-355Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Preliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms.

This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.

ZDB-2-SMA

ZDB-2-LNM

No hay comentarios en este titulo.

para colocar un comentario.