Inequalities for Differential Forms [electronic resource] / by Ravi P. Agarwal, Shusen Ding, Craig Nolder.

Por: Agarwal, Ravi P [author.]Colaborador(es): Ding, Shusen [author.] | Nolder, Craig [author.]Tipo de material: TextoTextoEditor: New York, NY : Springer New York, 2009Descripción: XVI, 387 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780387684178Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Global analysis (Mathematics) | Integral Transforms | Operator theory | Differential equations, partial | Global differential geometry | Mathematics | Differential Geometry | Partial Differential Equations | Integral Transforms, Operational Calculus | Analysis | Operator TheoryFormatos físicos adicionales: Sin títuloClasificación CDD: 516.36 Clasificación LoC:QA641-670Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: During the recent years, differential forms have played an important role in many fields. In particular, the forms satisfying the A-harmonic equations, have found wide applications in fields such as general relativity, theory of elasticity, quasiconformal analysis, differential geometry, and nonlinear differential equations in domains on manifolds. This monograph is the first one to systematically present a series of local and global estimates and inequalities for differential forms. The presentation concentrates on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are also covered. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout. This rigorous text requires a familiarity with topics such as differential forms, topology and Sobolev space theory. It will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

HardyLittlewood inequalities -- Norm comparison theorems -- PoincarȨ-type inequalities -- Caccioppoli inequalities -- Imbedding theorems -- Reverse Hȵlder inequalities -- Inequalities for operators -- Estimates for Jacobians -- Lipschitz and norms.

During the recent years, differential forms have played an important role in many fields. In particular, the forms satisfying the A-harmonic equations, have found wide applications in fields such as general relativity, theory of elasticity, quasiconformal analysis, differential geometry, and nonlinear differential equations in domains on manifolds. This monograph is the first one to systematically present a series of local and global estimates and inequalities for differential forms. The presentation concentrates on the Hardy-Littlewood, Poincare, Cacciooli, imbedded and reverse Holder inequalities. Integral estimates for operators, such as homotopy operator, the Laplace-Beltrami operator, and the gradient operator are also covered. Additionally, some related topics such as BMO inequalities, Lipschitz classes, Orlicz spaces and inequalities in Carnot groups are discussed in the concluding chapter. An abundance of bibliographical references and historical material supplement the text throughout. This rigorous text requires a familiarity with topics such as differential forms, topology and Sobolev space theory. It will serve as an invaluable reference for researchers, instructors and graduate students in analysis and partial differential equations and could be used as additional material for specific courses in these fields.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.