Dirac Operators in Representation Theory [electronic resource] / by Jing-Song Huang, Pavle Pandʾi.

Por: Huang, Jing-Song [author.]Colaborador(es): Pandʾi, Pavle [author.]Tipo de material: TextoTextoSeries Mathematics: Theory & ApplicationsEditor: Boston, MA : Birkhuser Boston, 2006Descripción: XII, 200 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780817644932Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Group theory | Topological Groups | Operator theory | Global differential geometry | Mathematical physics | Mathematics | Topological Groups, Lie Groups | Group Theory and Generalizations | Differential Geometry | Operator Theory | Mathematical Methods in PhysicsFormatos físicos adicionales: Sin títuloClasificación CDD: 512.55 | 512.482 Clasificación LoC:QA252.3QA387Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the BottBorelWeil theorem and the AtiyahSchmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Lie Groups, Lie Algebras and Representations -- Clifford Algebras and Spinors -- Dirac Operators in the Algebraic Setting -- A Generalized Bott-Borel-Weil Theorem -- Cohomological Induction -- Properties of Cohomologically Induced Modules -- Discrete Series -- Dimensions of Spaces of Automorphic Forms -- Dirac Operators and Nilpotent Lie Algebra Cohomology -- Dirac Cohomology for Lie Superalgebras.

This monograph presents a comprehensive treatment of important new ideas on Dirac operators and Dirac cohomology. Dirac operators are widely used in physics, differential geometry, and group-theoretic settings (particularly, the geometric construction of discrete series representations). The related concept of Dirac cohomology, which is defined using Dirac operators, is a far-reaching generalization that connects index theory in differential geometry to representation theory. Using Dirac operators as a unifying theme, the authors demonstrate how some of the most important results in representation theory fit together when viewed from this perspective. Key topics covered include: * Proof of Vogan's conjecture on Dirac cohomology * Simple proofs of many classical theorems, such as the BottBorelWeil theorem and the AtiyahSchmid theorem * Dirac cohomology, defined by Kostant's cubic Dirac operator, along with other closely related kinds of cohomology, such as n-cohomology and (g,K)-cohomology * Cohomological parabolic induction and _q(\lambda) modules * Discrete series theory, characters, existence and exhaustion * Sharpening of the Langlands formula on multiplicity of automorphic forms, with applications * Dirac cohomology for Lie superalgebras An excellent contribution to the mathematical literature of representation theory, this self-contained exposition offers a systematic examination and panoramic view of the subject. The material will be of interest to researchers and graduate students in representation theory, differential geometry, and physics.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.