An Introduction to Nonlinear Functional Analysis and Elliptic Problems [electronic resource] / by Antonio Ambrosetti, David Arcoya.

Por: Ambrosetti, Antonio [author.]Colaborador(es): Arcoya, David [author.]Tipo de material: TextoTextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 82Editor: Boston : Birkhuser Boston, 2011Descripción: XII, 199p. 12 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780817681142Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Differentiable dynamical systems | Functional analysis | Differential equations, partial | Mathematics | Functional Analysis | Partial Differential Equations | Dynamical Systems and Ergodic TheoryFormatos físicos adicionales: Sin títuloClasificación CDD: 515.7 Clasificación LoC:QA319-329.9Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This self-contained textbook provides the basic, abstracttoolsused innonlinear analysisand their applications to semilinear elliptic boundary value problems.By firstoutlining the advantages and disadvantages of each method, this comprehensive textdisplays how variousapproachescan easily beappliedto a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problemsis divided into two parts: the first discusses keyresults such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, LeraySchauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems. The exposition is driven by numerous prototype problems and exposes a variety of approaches tosolving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is apractical text for an introductory course or seminar on nonlinear functional analysis.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Notation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography.

This self-contained textbook provides the basic, abstracttoolsused innonlinear analysisand their applications to semilinear elliptic boundary value problems.By firstoutlining the advantages and disadvantages of each method, this comprehensive textdisplays how variousapproachescan easily beappliedto a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problemsis divided into two parts: the first discusses keyresults such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, LeraySchauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems. The exposition is driven by numerous prototype problems and exposes a variety of approaches tosolving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is apractical text for an introductory course or seminar on nonlinear functional analysis.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.