The Dynamics of Nonlinear Reaction-Diffusion Equations with Small LȨvy Noise [electronic resource] / by Arnaud Debussche, Michael Hȵgele, Peter Imkeller.

Por: Debussche, Arnaud [author.]Colaborador(es): Hȵgele, Michael [author.] | Imkeller, Peter [author.]Tipo de material: TextoTextoSeries Lecture Notes in Mathematics, 2085Editor: Cham : Springer International Publishing : Imprint: Springer, 2013Descripción: XIV, 165 p. 9 illus., 8 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783319008288Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Differentiable dynamical systems | Differential equations, partial | Distribution (Probability theory) | Mathematics | Probability Theory and Stochastic Processes | Dynamical Systems and Ergodic Theory | Partial Differential EquationsFormatos físicos adicionales: Sin títuloClasificación CDD: 519.2 Clasificación LoC:QA273.A1-274.9QA274-274.9Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Introduction -- The fine dynamics of the Chafee- Infante equation -- The stochastic Chafee- Infante equation -- The small deviation of the small noise solution -- Asymptotic exit times -- Asymptotic transition times -- Localization and metastability -- The source of stochastic models in conceptual climate dynamics.

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

ZDB-2-SMA

ZDB-2-LNM

No hay comentarios en este titulo.

para colocar un comentario.