Field Arithmetic [electronic resource] / by Michael D. Fried, Moshe Jarden.

Por: Fried, Michael D [author.]Colaborador(es): Jarden, Moshe [author.]Tipo de material: TextoTextoSeries A Series of Modern Surveys in Mathematics ; 11Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Edición: Second EditionDescripción: XXIII, 780 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540269496Otro título: Revised and Enlarged by Moshe JardenTrabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Algebra | Geometry, algebraic | Field theory (Physics) | Geometry | Logic, Symbolic and mathematical | Number theory | Mathematics | Algebra | Algebraic Geometry | Field Theory and Polynomials | Geometry | Mathematical Logic and Foundations | Number TheoryFormatos físicos adicionales: Sin títuloClasificación CDD: 512 Clasificación LoC: Libro electrónicoRecursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Infinite Galois Theory and Profinite Groups -- Valuations and Linear Disjointness -- Algebraic Function Fields of One Variable -- The Riemann Hypothesis for Function Fields -- Plane Curves -- The Chebotarev Density Theorem -- Ultraproducts -- Decision Procedures -- Algebraically Closed Fields -- Elements of Algebraic Geometry -- Pseudo Algebraically Closed Fields -- Hilbertian Fields -- The Classical Hilbertian Fields -- Nonstandard Structures -- Nonstandard Approach to Hilberts Irreducibility Theorem -- Galois Groups over Hilbertian Fields -- Free Profinite Groups -- The Haar Measure -- Effective Field Theory and Algebraic Geometry -- The Elementary Theory of e-Free PAC Fields -- Problems of Arithmetical Geometry -- Projective Groups and Frattini Covers -- PAC Fields and Projective Absolute Galois Groups -- Frobenius Fields -- Free Profinite Groups of Infinite Rank -- Random Elements in Profinite Groups -- Omega-free PAC Fields -- Undecidability -- Algebraically Closed Fields with Distinguished Automorphisms -- Galois Stratification -- Galois Stratification over Finite Fields -- Problems of Field Arithmetic.

Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.