Deterministic and Statistical Methods in Machine Learning [electronic resource] : First International Workshop, Sheffield, UK, September 7-10, 2004. Revised Lectures / edited by Joab Winkler, Mahesan Niranjan, Neil Lawrence.

Por: Winkler, Joab [editor.]Colaborador(es): Niranjan, Mahesan [editor.] | Lawrence, Neil [editor.]Tipo de material: TextoTextoSeries Lecture Notes in Computer Science, 3635Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2005Descripción: VIII, 341 p. Also available online. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540317289Trabajos contenidos: SpringerLink (Online service)Tema(s): Computer science | Database management | Information storage and retrieval systems | Artificial intelligence | Computer vision | Optical pattern recognition | Computer Science | Artificial Intelligence (incl. Robotics) | Mathematical Logic and Formal Languages | Database Management | Information Storage and Retrieval | Image Processing and Computer Vision | Pattern RecognitionFormatos físicos adicionales: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TJ210.2-211.495Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooks
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Object Recognition via Local Patch Labelling -- Multi Channel Sequence Processing -- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis -- Extensions of the Informative Vector Machine -- Efficient Communication by Breathing -- Guiding Local Regression Using Visualisation -- Transformations of Gaussian Process Priors -- Kernel Based Learning Methods: Regularization Networks and RBF Networks -- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions -- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis -- Ensemble Algorithms for Feature Selection -- Can Gaussian Process Regression Be Made Robust Against Model Mismatch? -- Understanding Gaussian Process Regression Using the Equivalent Kernel -- Integrating Binding Site Predictions Using Non-linear Classification Methods -- Support Vector Machine to Synthesise Kernels -- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data -- Variational Bayes Estimation of Mixing Coefficients -- A Comparison of Condition Numbers for the Full Rank Least Squares Problem -- SVM Based Learning System for Information Extraction.

ZDB-2-SCS

ZDB-2-LNC

No hay comentarios en este titulo.

para colocar un comentario.