Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment [electronic resource] : First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005, Revised Selected Papers / edited by Joaquin QuiȘonero-Candela, Ido Dagan, Bernardo Magnini, Florence dAlchȨ-Buc.
Tipo de material:
Evaluating Predictive Uncertainty Challenge -- Classification with Bayesian Neural Networks -- A Pragmatic Bayesian Approach to Predictive Uncertainty -- Many Are Better Than One: Improving Probabilistic Estimates from Decision Trees -- Estimating Predictive Variances with Kernel Ridge Regression -- Competitive Associative Nets and Cross-Validation for Estimating Predictive Uncertainty on Regression Problems -- Lessons Learned in the Challenge: Making Predictions and Scoring Them -- The 2005 PASCAL Visual Object Classes Challenge -- The PASCAL Recognising Textual Entailment Challenge -- Using Bleu-like Algorithms for the Automatic Recognition of Entailment -- What Syntax Can Contribute in the Entailment Task -- Combining Lexical Resources with Tree Edit Distance for Recognizing Textual Entailment -- Textual Entailment Recognition Based on Dependency Analysis and WordNet -- Learning Textual Entailment on a Distance Feature Space -- An Inference Model for Semantic Entailment in Natural Language -- A Lexical Alignment Model for Probabilistic Textual Entailment -- Textual Entailment Recognition Using Inversion Transduction Grammars -- Evaluating Semantic Evaluations: How RTE Measures Up -- Partial Predicate Argument Structure Matching for Entailment Determination -- VENSES A Linguistically-Based System for Semantic Evaluation -- Textual Entailment Recognition Using a LinguisticallyMotivated Decision Tree Classifier -- Recognizing Textual Entailment Via Atomic Propositions -- Recognising Textual Entailment with Robust Logical Inference -- Applying COGEX to Recognize Textual Entailment -- Recognizing Textual Entailment: Is Word Similarity Enough?.
ZDB-2-SCS
ZDB-2-LNC
No hay comentarios en este titulo.