Subspace, Latent Structure and Feature Selection [electronic resource] : Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers / edited by Craig Saunders, Marko Grobelnik, Steve Gunn, John Shawe-Taylor.

Por: Saunders, Craig [editor.]Colaborador(es): Grobelnik, Marko [editor.] | Gunn, Steve [editor.] | Shawe-Taylor, John [editor.]Tipo de material: TextoTextoSeries Lecture Notes in Computer Science, 3940Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Descripción: X, 209 p. Also available online. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540341383Trabajos contenidos: SpringerLink (Online service)Tema(s): Computer science | Computer software | Artificial intelligence | Computer vision | Optical pattern recognition | Computer Science | Algorithm Analysis and Problem Complexity | Probability and Statistics in Computer Science | Computation by Abstract Devices | Artificial Intelligence (incl. Robotics) | Image Processing and Computer Vision | Pattern RecognitionFormatos físicos adicionales: Sin títuloClasificación CDD: 005.1 Clasificación LoC:Libro electrónicoRecursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooks
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Invited Contributions -- Discrete Component Analysis -- Overview and Recent Advances in Partial Least Squares -- Random Projection, Margins, Kernels, and Feature-Selection -- Some Aspects of Latent Structure Analysis -- Feature Selection for Dimensionality Reduction -- Contributed Papers -- Auxiliary Variational Information Maximization for Dimensionality Reduction -- Constructing Visual Models with a Latent Space Approach -- Is Feature Selection Still Necessary? -- Class-Specific Subspace Discriminant Analysis for High-Dimensional Data -- Incorporating Constraints and Prior Knowledge into Factorization Algorithms An Application to 3D Recovery -- A Simple Feature Extraction for High Dimensional Image Representations -- Identifying Feature Relevance Using a Random Forest -- Generalization Bounds for Subspace Selection and Hyperbolic PCA -- Less Biased Measurement of Feature Selection Benefits.

ZDB-2-SCS

ZDB-2-LNC

No hay comentarios en este titulo.

para colocar un comentario.