A Concise Course on Stochastic Partial Differential Equations [electronic resource] / by Claudia PrȨvȳt, Michael Rȵckner.

Por: PrȨvȳt, Claudia [author.]Colaborador(es): Rȵckner, Michael [author.]Tipo de material: TextoTextoSeries Lecture Notes in Mathematics, 1905Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2007Descripción: VI, 148 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540707813Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Differential equations, partial | Distribution (Probability theory) | Mathematics | Partial Differential Equations | Probability Theory and Stochastic ProcessesFormatos físicos adicionales: Sin títuloClasificación CDD: 515.353 Clasificación LoC:QA370-380Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Motivation, Aims and Examples -- Stochastic Integral in Hilbert spaces -- Stochastic Differential Equations in Finite Dimensions -- A Class of Stochastic Differential Equations in Banach Spaces -- Appendices: The Bochner Integral -- Nuclear and Hilbert-Schmidt Operators -- Pseudo Invers of Linear Operators -- Some Tools from Real Martingale Theory -- Weak and Strong Solutions: the Yamada-Watanabe Theorem -- Strong, Mild and Weak Solutions.

These lectures concentrate on (nonlinear) stochastic partial differential equations (SPDE) of evolutionary type. All kinds of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. To keep the technicalities minimal we confine ourselves to the case where the noise term is given by a stochastic integral w.r.t. a cylindrical Wiener process.But all results can be easily generalized to SPDE with more general noises such as, for instance, stochastic integral w.r.t. a continuous local martingale. There are basically three approaches to analyze SPDE: the "martingale measure approach", the "mild solution approach" and the "variational approach". The purpose of these notes is to give a concise and as self-contained as possible an introduction to the "variational approach". A large part of necessary background material, such as definitions and results from the theory of Hilbert spaces, are included in appendices.

ZDB-2-SMA

ZDB-2-LNM

No hay comentarios en este titulo.

para colocar un comentario.