Probability and Real Trees [electronic resource] : cole d'tȨ de ProbabilitȨs de Saint-Flour XXXV - 2005 / by Steven Neil Evans.
Tipo de material:
Around the Continuum Random Tree -- R-Trees and 0-Hyperbolic Spaces -- Hausdorff and GromovHausdorff Distance -- Root Growth with Re-Grafting -- The Wild Chain and other Bipartite Chains -- Diffusions on a R-Tree without Leaves: Snakes and Spiders -- RTrees from Coalescing Particle Systems -- Subtree Prune and Re-Graft.
Random trees and tree-valued stochastic processes are of particular importance in combinatorics, computer science, phylogenetics, and mathematical population genetics. Using the framework of abstract "tree-like" metric spaces (so-called real trees) and ideas from metric geometry such as the Gromov-Hausdorff distance, Evans and his collaborators have recently pioneered an approach to studying the asymptotic behaviour of such objects when the number of vertices goes to infinity. These notes survey the relevant mathematical background and present some selected applications of the theory.
ZDB-2-SMA
ZDB-2-LNM
No hay comentarios en este titulo.