Linear and Generalized Linear Mixed Models and Their Applications [electronic resource] / by Jiming Jiang.

Por: Jiang, Jiming [author.]Tipo de material: TextoTextoSeries Springer Series in StatisticsEditor: New York, NY : Springer New York, 2007Descripción: XIV, 257 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780387479460Trabajos contenidos: SpringerLink (Online service)Tema(s): Statistics | Genetics -- Mathematics | Numerical analysis | Mathematical statistics | Statistics | Statistical Theory and Methods | Public Health/Gesundheitswesen | Numerical Analysis | Genetics and Population DynamicsFormatos físicos adicionales: Sin títuloClasificación CDD: 519.5 Clasificación LoC:QA276-280Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis. The book is suitable for a course in a M.S. program in statistics, provided that the section of further results and technical notes in each of the first four chapters is skipped. If these four sections are included, the book may be used for a course in a Ph. D. program in statistics. A first course in mathematical statistics, the ability to use computers for data analysis, and familiarity with calculus and linear algebra are prerequisites. Additional statistical courses such as regression analysis and a good knowledge about matrices would be helpful. Jiming Jiang is Professor of Statistics and Director of the Statistical Laboratory at UC-Davis. He is a prominent researcher in the fields of mixed effects models and small area estimation, and co-receiver of the Chinese National Natural Science Award and American Statistical Association's Outstanding Statistical Application Award.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Linear Mixed Models: Part I -- Linear Mixed Models: Part II -- Generalized Linear Mixed Models: Part I -- Generalized Linear Mixed Models: Part II.

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models, and it presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it has included recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis. The book is suitable for a course in a M.S. program in statistics, provided that the section of further results and technical notes in each of the first four chapters is skipped. If these four sections are included, the book may be used for a course in a Ph. D. program in statistics. A first course in mathematical statistics, the ability to use computers for data analysis, and familiarity with calculus and linear algebra are prerequisites. Additional statistical courses such as regression analysis and a good knowledge about matrices would be helpful. Jiming Jiang is Professor of Statistics and Director of the Statistical Laboratory at UC-Davis. He is a prominent researcher in the fields of mixed effects models and small area estimation, and co-receiver of the Chinese National Natural Science Award and American Statistical Association's Outstanding Statistical Application Award.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.