From Hahn-Banach to Monotonicity [electronic resource] / by Stephen Simons.

Por: Simons, Stephen [author.]Tipo de material: TextoTextoSeries Lecture Notes in Mathematics, 1693Editor: Dordrecht : Springer Netherlands, 2008Descripción: online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781402069192Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Functional analysis | Operator theory | Mathematical optimization | Mathematics | Functional Analysis | Calculus of Variations and Optimal Control; Optimization | Operator TheoryFormatos físicos adicionales: Sin títuloClasificación CDD: 515.7 Clasificación LoC:QA319-329.9Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: In this new edition of LNM 1693 the essential idea is to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a ǣbig convexificationǥ of the graph of the multifunction and the ǣminimax techniqueǥfor proving the existence of linear functionals satisfying certain conditions, the Fitzpatrick function is used. The journey begins with a generalization of the Hahn-Banach theorem uniting classical functional analysis, minimax theory, Lagrange multiplier theory and convex analysis and culminates in a survey of current results on monotone multifunctions on a Banach space. The first two chapters are aimed at students interested in the development of the basic theorems of functional analysis, which leads painlessly to the theory of minimax theorems, convex Lagrange multiplier theory and convex analysis. The remaining five chapters are useful for those who wish to learn about the current research on monotone multifunctions on (possibly non reflexive) Banach space.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

The Hahn-Banach-Lagrange theorem and some consequences -- Fenchel duality -- Multifunctions, SSD spaces, monotonicity and Fitzpatrick functions -- Monotone multifunctions on general Banach spaces -- Monotone multifunctions on reflexive Banach spaces -- Special maximally monotone multifunctions -- The sum problem for general Banach spaces -- Open problems -- Glossary of classes of multifunctions -- A selection of results.

In this new edition of LNM 1693 the essential idea is to reduce questions on monotone multifunctions to questions on convex functions. However, rather than using a ǣbig convexificationǥ of the graph of the multifunction and the ǣminimax techniqueǥfor proving the existence of linear functionals satisfying certain conditions, the Fitzpatrick function is used. The journey begins with a generalization of the Hahn-Banach theorem uniting classical functional analysis, minimax theory, Lagrange multiplier theory and convex analysis and culminates in a survey of current results on monotone multifunctions on a Banach space. The first two chapters are aimed at students interested in the development of the basic theorems of functional analysis, which leads painlessly to the theory of minimax theorems, convex Lagrange multiplier theory and convex analysis. The remaining five chapters are useful for those who wish to learn about the current research on monotone multifunctions on (possibly non reflexive) Banach space.

ZDB-2-SMA

ZDB-2-LNM

No hay comentarios en este titulo.

para colocar un comentario.