Functional Equations in Mathematical Analysis [electronic resource] / edited by Themistocles M. Rassias, Janusz Brzdek.

Por: Rassias, Themistocles M [editor.]Colaborador(es): Brzdek, Janusz [editor.]Tipo de material: TextoTextoSeries Springer Optimization and Its Applications, 52Editor: New York, NY : Springer New York : Imprint: Springer, 2012Descripción: XVII, 749p. 6 illus., 1 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781461400554Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Functional equations | Functional analysis | Functions, special | Mathematics | Difference and Functional Equations | Functional Analysis | Special FunctionsFormatos físicos adicionales: Sin títuloClasificación CDD: 515.625 | 515.75 Clasificación LoC:QA431Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: Functional Equations in Mathematical Analysis, dedicated to S.M. Ulam in honor of his 100th birthday, focuses on various important areas of research in mathematical analysis and related subjects, providing an insight into the study of numerous nonlinear problems. Among other topics, it supplies the most recent results on the solutions to the Ulam stability problem. The original stability problem was posed by S.M. Ulam in 1940 and concerned approximate homomorphisms. The pursuit of solutions to this problem, but also to its generalizations and/or modifications for various classes of equations and inequalities, is an expanding area of research, and has led to the development of what is now called the HyersUlam stability theory. Comprised of contributions from eminent scientists and experts from the international mathematical community, the volume presents several important types of functional equations and inequalities and their applications in mathematical analysis, geometry, physics, and applied mathematics. It is intended for researchers and students in mathematics, physics, and other computational and applied sciences.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Preface -- 1. Stability properties of some functional equations (R. Badora) -- 2. Note on superstability of Mikusiskis functional equation (B. Batko) -- 3. A general fixed point method for the stability of Cauchy functional equation (L. Cdariu, V. Radu) -- 4. Orthogonality preserving property and its Ulam stability (J. Chmieliski) -- 5. On the Hyers-Ulam stability of functional equations with respect to bounded distributions (J.-U. Chung) -- 6. Stability of multi-Jensen mappings in non-Archimedean normed spaces (K. Ciepliski) -- 7. On stability of the equation of homogeneous functions on topological spaces (S. Czerwik) -- 8. Hyers-Ulam stability of the quadratic functional equation (E. Elhoucien, M. Youssef, T. M. Rassias) -- 9. Intuitionistic fuzzy approximately additive mappings (M. Eshaghi-Gordji, H. Khodaei, H. Baghani, M. Ramezani) -- 10. Stability of the pexiderized Cauchy functional equation in non-Archimedean spaces (G. Z. Eskandani, P. Gvrua) -- 11. Generalized Hyers-Ulam stability for general quadratic functional equation in quasi-Banach spaces (J. Gao) -- 12. Ulam stability problem for frames (L. Gvrua, P. Gvrua) -- 13. Generalized Hyers-Ulam stability of a quadratic functional equation (K.-W. Jun, H-M. Kim, J. Son) -- 14. On the Hyers-Ulam-Rassias stability of the bi-Pexider functional equation (K.-W. Jun, Y.-H. Lee) -- 15. Approximately midconvex functions (K. Misztal, J. Tabor, J. Tabor) -- 16. The Hyers-Ulam and Ger type stabilities of the first order linear differential equations (T. Miura, G. Hirasawa) -- 17. On the Butler-Rassias functional equation and its generalized Hyers-Ulam stability (T. Miura, G. Hirasawa, T. Hayata) -- 18. A note on the stability of an integral equation (T. Miura, G. Hirasawa, S.-E. Takahasi, T. Hayata) -- 19. On the stability of polynomial equations (A. Najati, T. M. Rassias) -- 20. Isomorphisms and derivations in proper JCQ*-triples (C. Park, M. Eshaghi-Gordji) -- 21. Fuzzy stability of an additive-quartic functional equation: a fixed point approach (C. Park, T.M. Rassias) -- 22. Selections of set-valued maps satisfying functional inclusions on square-symmetric grupoids (D. Popa) -- 23. On stability of isometries in Banach spaces (V.Y. Protasov) -- 24. Ulam stability of the operatorial equations (I.A. Rus) -- 25. Stability of the quadratic-cubic functional equation in quasi-Banach spaces (Z. Wang, W. Zhang) -- 26. -trigonometric functional equations and Hyers-Ulam stability problem in hypergroups (D. Zeglami, S. Kabbaj, A. Charifi, A. Roukbi) -- 27. On multivariate Ostrowski type inequalities (Z Changjian, W.-S. Cheung) -- 28. Ternary semigroups and ternary algebras (A. Chronowski) -- 29. Popoviciu type functional equations on groups (M. Chudziak) -- 30. Norm and numerical radius inequalities for two linear operators in Hillbert spaces: a survey of recent results (S.S. Dragomir) -- 31. Cauchys functional equation and nowhere continuous/everywhere dense Costas bijections in Euclidean spaces (K. Drakakis) -- 32. On solutions of some generalizations of the Gob-Schinzel equation (E. Jaboska) -- 33. One-parameter groups of formal power series of one indeterminate (W. Jaboski) -- 34. On some problems concerning a sum type operator (H.H. Kairies) -- 35. Priors on the space of unimodal probability measures (G. Kouvaras, G. Kokolakis) -- 36. Generalized weighted arithmetic means (J. Matkowski) -- 37. On means which are quasi-arithmetic and of the Beckenbach-Gini type (J. Matkowski) -- 38. Scalar Riemann-Hillbert problem for multiply connected domains (V.V. Mityushev) -- 39. Hodge theory for Riemannian solenoids (V. MuȘoz, R.P. Marco) -- 40. On solutions of a generalization of the Gob-Schinzel functional equation (A. Mureko) -- 41. On functional equation containing an indexed family of unknown mappings (P. Nath, D.K. Singh) -- 42. Two-step iterative method for nonconvex bifunction variational inequalities (M.A. Noor, K.I. Noor, E. Al-Said) -- 43. On a Sincov type functional equation (P. K. Sahoo) -- 44. Invariance in some families of means (G. Toader, I. Costin, S. Toader) -- 45. On a Hillbert-type integral inequality (B. Yang) -- 46. An extension of Hardy-Hillberts inequality (B. Yang) -- 47. A relation to Hillberts integral inequality and a basic Hillbert-type inequality (B. Yang, T.M. Rassias).

Functional Equations in Mathematical Analysis, dedicated to S.M. Ulam in honor of his 100th birthday, focuses on various important areas of research in mathematical analysis and related subjects, providing an insight into the study of numerous nonlinear problems. Among other topics, it supplies the most recent results on the solutions to the Ulam stability problem. The original stability problem was posed by S.M. Ulam in 1940 and concerned approximate homomorphisms. The pursuit of solutions to this problem, but also to its generalizations and/or modifications for various classes of equations and inequalities, is an expanding area of research, and has led to the development of what is now called the HyersUlam stability theory. Comprised of contributions from eminent scientists and experts from the international mathematical community, the volume presents several important types of functional equations and inequalities and their applications in mathematical analysis, geometry, physics, and applied mathematics. It is intended for researchers and students in mathematics, physics, and other computational and applied sciences.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.