Falling Liquid Films [electronic resource] / by S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M. G. Velarde.

Por: Kalliadasis, S [author.]Colaborador(es): Ruyer-Quil, C [author.] | Scheid, B [author.] | Velarde, M. G [author.]Tipo de material: TextoTextoSeries Applied Mathematical Sciences, 176Editor: London : Springer London, 2012Descripción: XVI, 440 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781848823679Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Visualization | Engineering mathematics | Mathematics | Applications of Mathematics | Classical Continuum Physics | Appl.Mathematics/Computational Methods of Engineering | Fluid- and Aerodynamics | Visualization | Theoretical, Mathematical and Computational PhysicsFormatos físicos adicionales: Sin títuloClasificación CDD: 519 Clasificación LoC:T57-57.97Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Introduction -- Flow and heat transfer -- Primary instability -- Boundary layer approximation -- Methodologies for low Re flows -- Methodologies for moderate Re flows -- Isothermal case: 2D flow -- Isothermal case: 3D flow -- Interaction of 3D solitary waves -- Heated films -- Reactive films -- Open questions and suggestions for further research.

Falling Liquid Films gives a detailed review of state-of-the-art theoretical, analytical and numerical methodologies, for the analysis of dissipative wave dynamics and pattern formation on the surface of a film falling down a planar inclined substrate. This prototype is an open-flow hydrodynamic instability, that represents an excellent paradigm for the study of complexity in active nonlinear media with energy supply, dissipation and dispersion. It will also be of use for a more general understanding of specific events characterizing the transition to spatio-temporal chaos and weak/dissipative turbulence. Particular emphasis is given to low-dimensional approximations for such flows through a hierarchy of modeling approaches, including equations of the boundary-layer type, averaged formulations based on weighted residuals approaches and long-wave expansions. Whenever possible the link between theory and experiment is illustrated, and, as a further bridge between the two, the development of order-of-magnitude estimates and scaling arguments is used to facilitate the understanding of basic, underlying physics. This monograph will appeal to advanced graduate students in applied mathematics, science or engineering undertaking research on interfacial fluid mechanics or studying fluid mechanics as part of their program. It will also be of use to researchers working on both applied, fundamental theoretical and experimental aspects of thin film flows, as well as engineers and technologists dealing with processes involving isothermal or heated films. This monograph is largely self-contained and no background on interfacial fluid mechanics is assumed.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.