Schwarz-Pick Type Inequalities [electronic resource] / by Farit G. Avkhadiev, Karl-Joachim Wirths.

Por: Avkhadiev, Farit G [author.]Colaborador(es): Wirths, Karl-Joachim [author.]Tipo de material: TextoTextoSeries Frontiers in MathematicsEditor: Basel : Birkhuser Basel, 2009Descripción: VIII, 156 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783034600002Trabajos contenidos: SpringerLink (Online service)Tema(s): Mathematics | Global analysis (Mathematics) | Mathematics | AnalysisFormatos físicos adicionales: Sin títuloClasificación CDD: 515 Clasificación LoC:QA299.6-433Recursos en línea: de clik aquí para ver el libro electrónico
Contenidos:
Springer eBooksResumen: This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the PoincarȨ metric, and a successful combination of the classical ideas of Littlewood, Lȵwner and Teichmȭller with modern approaches. The material is complemented with historical remarks on the Schwarz Lemma and a chapter introducing some challenging open problems. The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    Valoración media: 0.0 (0 votos)
No hay ítems correspondientes a este registro

Basic coefficient inequalities -- The PoincarȨ metric -- Basic Schwarz-Pick type inequalities -- Punishing factors for special cases -- Multiply connected domains -- Related results -- Some open problems.

This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the PoincarȨ metric, and a successful combination of the classical ideas of Littlewood, Lȵwner and Teichmȭller with modern approaches. The material is complemented with historical remarks on the Schwarz Lemma and a chapter introducing some challenging open problems. The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry.

ZDB-2-SMA

No hay comentarios en este titulo.

para colocar un comentario.