000 | 04071nam a22005895i 4500 | ||
---|---|---|---|
003 | DE-He213 | ||
005 | 20191011023630.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2006 xxu| s |||| 0|eng d | ||
020 | 6 | 4 |
_a9780817644796 _9978-0-8176-4479-6 |
024 | 8 | 7 |
_a10.1007/0-8176-4479-2 _2doi |
050 | 8 | 4 | _aQA641-670 |
072 | 8 | 7 |
_aPBMP _2bicssc |
072 | 8 | 7 |
_aMAT012030 _2bisacsh |
082 |
_a516.36 _223 |
||
100 | 8 | 1 |
_aFels, Gregor. _eauthor. _932167 |
245 | 9 | 7 |
_aCycle Spaces of Flag Domains _h[electronic resource] : _bA Complex Geometric Viewpoint / _cby Gregor Fels, Alan Huckleberry, Joseph A. Wolf. |
001 | 000047755 | ||
300 | 6 | 4 |
_aXX, 339 p. _bonline resource. |
490 | 8 | 1 |
_aProgress in Mathematics ; _v245 |
505 | 8 | 0 | _ato Flag Domain Theory -- Structure of Complex Flag Manifolds -- Real Group Orbits -- Orbit Structure for Hermitian Symmetric Spaces -- Open Orbits -- The Cycle Space of a Flag Domain -- Cycle Spaces as Universal Domains -- Universal Domains -- B-Invariant Hypersurfaces in MZ -- Orbit Duality via Momentum Geometry -- Schubert Slices in the Context of Duality -- Analysis of the Boundary of U -- Invariant Kobayashi-Hyperbolic Stein Domains -- Cycle Spaces of Lower-Dimensional Orbits -- Examples -- Analytic and Geometric Consequences -- The Double Fibration Transform -- Variation of Hodge Structure -- Cycles in the K3 Period Domain -- The Full Cycle Space -- Combinatorics of Normal Bundles of Base Cycles -- Methods for Computing H1(C; O) -- Classification for Simple with rank < rank -- Classification for rank = rank . |
520 | 6 | 4 | _aThis monograph, divided into four parts, presents a comprehensive treatment and systematic examination of cycle spaces of flag domains. Assuming only a basic familiarity with the concepts of Lie theory and geometry, this work presents a complete structure theory for these cycle spaces, as well as their applications to harmonic analysis and algebraic geometry. Key features: * Accessible to readers from a wide range of fields, with all the necessary background material provided for the nonspecialist * Many new results presented for the first time * Driven by numerous examples * The exposition is presented from the complex geometric viewpoint, but the methods, applications and much of the motivation also come from real and complex algebraic groups and their representations, as well as other areas of geometry * Comparisons with classical Barlet cycle spaces are given * Good bibliography and index Researchers and graduate students in differential geometry, complex analysis, harmonic analysis, representation theory, transformation groups, algebraic geometry, and areas of global geometric analysis will benefit from this work. |
650 | 8 | 0 |
_aMathematics. _98571 |
650 | 8 | 0 |
_aGeometry, algebraic. _932168 |
650 | 8 | 0 |
_aTopological Groups. _99529 |
650 | 8 | 0 |
_aGlobal analysis. _917903 |
650 | 8 | 0 |
_aDifferential equations, partial. _99614 |
650 | 8 | 0 |
_aGlobal differential geometry. _99530 |
650 | 8 | 0 |
_aQuantum theory. _912354 |
650 |
_aMathematics. _98571 |
||
650 |
_aDifferential Geometry. _99532 |
||
650 |
_aTopological Groups, Lie Groups. _99531 |
||
650 |
_aSeveral Complex Variables and Analytic Spaces. _912257 |
||
650 |
_aGlobal Analysis and Analysis on Manifolds. _917904 |
||
650 |
_aAlgebraic Geometry. _932169 |
||
650 |
_aQuantum Physics. _912357 |
||
700 | 8 | 1 |
_aHuckleberry, Alan. _eauthor. _932170 |
700 | 8 | 1 |
_aWolf, Joseph A. _eauthor. _932171 |
710 | 8 | 2 |
_aSpringerLink (Online service) _932172 |
773 | 8 | 0 | _tSpringer eBooks |
776 |
_iPrinted edition: _z9780817643911 |
||
830 | 8 | 0 |
_aProgress in Mathematics ; _v245 _932173 |
856 |
_uhttp://dx.doi.org/10.1007/0-8176-4479-2 _zde clik aquí para ver el libro electrónico |
||
264 | 8 | 1 |
_aBoston, MA : _bBirkhuser Boston, _c2006. |
336 | 6 | 4 |
_atext _btxt _2rdacontent |
337 | 6 | 4 |
_acomputer _bc _2rdamedia |
338 | 6 | 4 |
_aonline resource _bcr _2rdacarrier |
347 | 6 | 4 |
_atext file _bPDF _2rda |
516 | 6 | 4 | _aZDB-2-SMA |
999 |
_c47484 _d47484 |
||
942 | _c05 |