000 03466nam a22005175i 4500
003 DE-He213
005 20191011082653.0
007 cr nn 008mamaa
008 130920s2013 xxu| s |||| 0|eng d
020 6 4 _a9781461479246
_9978-1-4614-7924-6
024 8 7 _a10.1007/978-1-4614-7924-6
_2doi
050 8 4 _aQA299.6-433
072 8 7 _aPBK
_2bicssc
072 8 7 _aMAT034000
_2bisacsh
082 _a515
_223
100 8 1 _aKrantz, Steven G.
_eauthor.
_982163
245 9 7 _aGeometric Analysis of the Bergman Kernel and Metric
_h[electronic resource] /
_cby Steven G. Krantz.
001 000056280
300 6 4 _aXIII, 292 p. 7 illus.
_bonline resource.
490 8 1 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v268
505 8 0 _aPreface -- 1. Introductory Ideas -- 2.The Bergman Metric -- 3. Geometric and Analytic Ideas -- 4. Partial Differential Equations -- 5. Further Geometric Explorations -- 6. Additional Analytic Topics -- 7. Curvature of the Bergman Metric -- 8. Concluding Remarks -- Table of Notation -- Bibliography -- Index.
520 6 4 _aThis text provides a masterful and systematic treatment of all the basic analytic and geometric aspects of Bergman's classic theory of the kernel and its invariance properties. These include calculation, invariance properties, boundary asymptotics, and asymptotic expansion of the Bergman kernel and metric.Moreover, itpresents a unique compendium of results with applications to function theory, geometry, partial differential equations, and interpretations in the language of functional analysis, with emphasis on the several complex variables context. Several of these topics appear here for the first time in book form. Each chapter includes illustrative examples and a collection of exercises which will be of interest to both graduate students and experienced mathematicians. Graduate students who have taken courses in complex variables and have a basic background in real and functional analysis will find this textbook appealing. Applicable courses for either main or supplementary usage include those in complex variables, several complex variables, complex differential geometry, and partial differential equations. Researchers in complex analysis, harmonic analysis, PDEs, and complex differential geometry will also benefit from the thorough treatment of the many exciting aspects of Bergman's theory.
650 8 0 _aMathematics.
_98571
650 8 0 _aGlobal analysis (Mathematics).
_910011
650 8 0 _aFunctional analysis.
_982164
650 8 0 _aDifferential equations, partial.
_99614
650 8 0 _aGlobal differential geometry.
_99530
650 _aMathematics.
_98571
650 _aAnalysis.
_910013
650 _aPartial Differential Equations.
_99616
650 _aFunctional Analysis.
_982165
650 _aDifferential Geometry.
_99532
710 8 2 _aSpringerLink (Online service)
_982166
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9781461479239
830 8 0 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v268
_982167
856 _uhttp://dx.doi.org/10.1007/978-1-4614-7924-6
_zde clik aquí para ver el libro electrónico
264 8 1 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c2013.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
999 _c56010
_d56010
942 _c05