000 03166nam a22005175i 4500
003 DE-He213
005 20191012065638.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 6 4 _a9783540376811
_9978-3-540-37681-1
024 8 7 _a10.1007/3-540-37681-X
_2doi
050 8 4 _aQC19.2-20.85
072 8 7 _aPHU
_2bicssc
072 8 7 _aSCI040000
_2bisacsh
082 _a530.1
_223
100 8 1 _aBorchers, Hans-Jȭrgen.
_eauthor.
_9119436
245 9 7 _aMathematical Implications of Einstein-Weyl Causality
_h[electronic resource] /
_cby Hans-Jȭrgen Borchers, Rathindra Nath Sen.
001 000062113
300 6 4 _aXII, 190 p. 37 illus.
_bonline resource.
490 8 1 _aLecture Notes in Physics,
_x0075-8450 ;
_v709
505 8 0 _aGeometrical Structures on Space-Time -- Light Rays and Light Cones -- Local Structure and Topology -- Homogeneity Properties -- Ordered Spaces and Complete Uniformizability -- Spaces with Complete Light Rays -- Consequences of Order Completeness -- The Cushion Problem -- Related Works -- Concluding Remarks -- Erratum to: Geometrical Structures on Space-Time -- Erratum to: Light Rays and Light Cones -- Erratum to: Local Structure and Topology -- Erratum to: Ordered Spaces and Complete Uniformizability -- Erratum to: Spaces with Complete Light Rays -- Erratum to: Consequences of Order Completeness -- Erratum.
520 6 4 _aThe present work is the first systematic attempt at answering the following fundamental question: what mathematical structures does Einstein-Weyl causality impose on a point-set that has no other previous structure defined on it? The authors propose an axiomatization of Einstein-Weyl causality (inspired by physics), and investigate the topological and uniform structures that it implies. Their final result is that a causal space is densely embedded in one that is locally a differentiable manifold. The mathematical level required of the reader is that of the graduate student in mathematical physics.
650 8 0 _aPhysics.
_9119437
650 8 0 _aGlobal differential geometry.
_99530
650 8 0 _aCell aggregation
_xMathematics.
_912625
650 _aPhysics.
_9119437
650 _aTheoretical, Mathematical and Computational Physics.
_921503
650 _aManifolds and Cell Complexes (incl. Diff.Topology).
_912627
650 _aClassical and Quantum Gravitation, Relativity Theory.
_912517
650 _aDifferential Geometry.
_99532
700 8 1 _aSen, Rathindra Nath.
_eauthor.
_9119438
710 8 2 _aSpringerLink (Online service)
_9119439
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783540376804
830 8 0 _aLecture Notes in Physics,
_x0075-8450 ;
_v709
_9119440
856 _uhttp://dx.doi.org/10.1007/3-540-37681-X
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2006.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-PHA
516 6 4 _aZDB-2-LNP
999 _c61843
_d61843
942 _c05