000 03988nam a22005415i 4500
003 DE-He213
005 20191013104544.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 6 4 _a9783540683490
_9978-3-540-68349-0
024 8 7 _a10.1007/978-3-540-68349-0
_2doi
050 8 4 _aQA351
072 8 7 _aPBKF
_2bicssc
072 8 7 _aMAT034000
_2bisacsh
072 8 7 _aMAT037000
_2bisacsh
082 _a515.5
_223
100 8 1 _aMastroianni, Giuseppe.
_eauthor.
_9124309
245 9 7 _aInterpolation Processes
_h[electronic resource] :
_bBasic Theory and Applications /
_cby Giuseppe Mastroianni, Gradimir V. Milovanovi.
001 000062756
300 6 4 _aXIV, 446 p. 42 illus.
_bonline resource.
490 8 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 8 0 _a1. Constructive Elements and Approaches in Approximation Theory -- 1.1 Introduction to Approximation Theory -- 1.2 Basic Facts on Trigonometric Approximation -- 1.3 Chebyshev Systems and Interpolation -- 1.4 Interpolation by Algebraic Polynomials -- 2. Orthogonal Polynomials and Weighted Polynomial Approximation -- 2.1 Orthogonal Systems and Polynomials -- 2.2 Orthogonal Polynomials on the Real Line -- 2.3 Classical Orthogonal Polynomials -- 2.4 Nonclassical Orthogonal Polynomials -- 2.5 Weighted Polynomial Approximation -- 3. Trigonometric Approximation -- 3.1 Approximating Properties of Operators -- 3.2 Discrete Operators -- 4. Algebraic Interpolation in Uniform Norm -- 4.1 Introduction and Preliminaries -- 4.2 Optimal Systems of Nodes -- 4.3 Weighted Interpolation -- 5. Applications -- 5.1 Quadrature Formulae -- 5.2 Integral Equations -- 5.3 Moment-Preserving Approximation -- 5.4 Summation of Slowly Convergent Series -- References -- Index.
520 6 4 _aThe classical books on interpolation address numerous negative results, i.e., results on divergent interpolation processes, usually constructed over some equidistant systems of nodes. The authors present, with complete proofs, recent results on convergent interpolation processes, for trigonometric and algebraic polynomials of one real variable, not yet published in other textbooks and monographs on approximation theory and numerical mathematics. In this special, but fundamental and important field of real analysis the authors present the state of art. Some 500 references are cited, including many new results of the authors. Basic tools in this field (orthogonal polynomials, moduli of smoothness, K-functionals, etc.) as well as some selected applications in numerical integration, integral equations, moment-preserving approximation and summation of slowly convergent series are also given. Beside the basic properties of the classical orthogonal polynomials the book provides new results on nonclassical orthogonal polynomials including methods for their numerical construction.
650 8 0 _aMathematics.
_98571
650 8 0 _aFourier analysis.
_9124310
650 8 0 _aIntegral equations.
_9124311
650 8 0 _aSequences (Mathematics).
_914062
650 8 0 _aFunctions, special.
_910257
650 _aMathematics.
_98571
650 _aSpecial Functions.
_910259
650 _aSequences, Series, Summability.
_914066
650 _aFourier Analysis.
_9124312
650 _aIntegral Equations.
_9124313
700 8 1 _aMilovanovi, Gradimir V.
_eauthor.
_9124314
710 8 2 _aSpringerLink (Online service)
_9124315
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783540683469
830 8 0 _aSpringer Monographs in Mathematics,
_x1439-7382
_9124316
856 _uhttp://dx.doi.org/10.1007/978-3-540-68349-0
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
999 _c62486
_d62486
942 _c05