000 03038nam a22004695i 4500
003 DE-He213
005 20191013144629.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 6 4 _a9783540773412
_9978-3-540-77341-2
024 8 7 _a10.1007/978-3-540-77341-2
_2doi
050 8 4 _aQA641-670
072 8 7 _aPBMP
_2bicssc
072 8 7 _aMAT012030
_2bisacsh
082 _a516.36
_223
100 8 1 _aJost, Jȭrgen.
_eauthor.
_9138267
245 9 7 _aRiemannian Geometry and Geometric Analysis
_h[electronic resource] /
_cby Jȭrgen Jost.
001 000070129
300 6 4 _aXIV, 590 p. 14 illus., 4 illus. in color.
_bonline resource.
490 8 1 _aUniversitext
505 8 0 _aFoundational Material -- De Rham Cohomology and Harmonic Differential Forms -- Parallel Transport, Connections, and Covariant Derivatives -- Geodesics and Jacobi Fields -- Symmetric Spaces and Khler Manifolds -- Morse Theory and Floer Homology -- Harmonic Maps between Riemannian Manifolds -- Harmonic maps from Riemann surfaces -- Variational Problems from Quantum Field Theory.
520 6 4 _aThis established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research.This new edition introduces and explains the ideas of the parabolic methods that have recently found such a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discusses further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. The author focuses on using analytic methods in the study of some fundamental theorems in Riemannian geometry, e.g., the Hodge theorem, the Rauch comparison theorem, the Lyusternik and Fet theorem and the existence of harmonic mappings. With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome. [..] The book is made more interesting by the perspectives in various sections." Mathematical Reviews
650 8 0 _aMathematics.
_98571
650 8 0 _aGlobal differential geometry.
_99530
650 8 0 _aMathematical physics.
_99251
650 _aMathematics.
_98571
650 _aDifferential Geometry.
_99532
650 _aMathematical and Computational Physics.
_910012
710 8 2 _aSpringerLink (Online service)
_9138268
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783540773405
830 8 0 _aUniversitext
_99677
856 _uhttp://dx.doi.org/10.1007/978-3-540-77341-2
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
999 _c64395
_d64395
942 _c05