000 03787nam a22006135i 4500
003 DE-He213
005 20191013144748.0
007 cr nn 008mamaa
008 100301s2008 gw | s |||| 0|eng d
020 6 4 _a9783540776536
_9978-3-540-77653-6
024 8 7 _a10.1007/978-3-540-77653-6
_2doi
050 8 4 _aQ295
050 8 4 _aQA402.3-402.37
072 8 7 _aGPFC
_2bicssc
072 8 7 _aSCI064000
_2bisacsh
072 8 7 _aTEC004000
_2bisacsh
082 _a519
_223
100 8 1 _aAgrachev, Andrei A.
_eauthor.
_9138848
245 9 7 _aNonlinear and Optimal Control Theory
_h[electronic resource] :
_bLectures given at the C.I.M.E. Summer School held in Cetraro, Italy June 1929, 2004 /
_cby Andrei A. Agrachev, A. Stephen Morse, Eduardo D. Sontag, HȨctor J. Sussmann, Vadim I. Utkin ; edited by Paolo Nistri, Gianna Stefani.
001 000064747
300 6 4 _bonline resource.
490 8 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1932
505 8 0 _aGeometry of Optimal Control Problems and Hamiltonian Systems -- Lecture Notes on Logically Switched Dynamical Systems -- Input to State Stability: Basic Concepts and Results -- Generalized Differentials, Variational Generators, and the Maximum Principle with State Constraints -- Sliding Mode Control: Mathematical Tools, Design and Applications.
520 6 4 _aThe lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.
650 8 0 _aMathematics.
_98571
650 8 0 _aDifferentiable dynamical systems.
_99712
650 8 0 _aSystems theory.
_911625
650 8 0 _aGlobal differential geometry.
_99530
650 _aMathematics.
_98571
650 _aSystems Theory, Control.
_911627
650 _aCalculus of Variations and Optimal Control, Optimization.
_911366
650 _aDifferential Geometry.
_99532
650 _aDynamical Systems and Ergodic Theory.
_99715
700 8 1 _aMorse, A. Stephen.
_eauthor.
_9138849
700 8 1 _aSontag, Eduardo D.
_eauthor.
_9138850
700 8 1 _aSussmann, HȨctor J.
_eauthor.
_9138851
700 8 1 _aUtkin, Vadim I.
_eauthor.
_9138852
700 8 1 _aNistri, Paolo.
_eeditor.
_9138853
700 8 1 _aStefani, Gianna.
_eeditor.
_9138854
710 8 2 _aSpringerLink (Online service)
_9138855
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783540776444
830 8 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1932
_9138856
856 _uhttp://dx.doi.org/10.1007/978-3-540-77653-6
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2008.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
516 6 4 _aZDB-2-LNM
999 _c64477
_d64477
942 _c05