000 02297nam a22004215i 4500
003 DE-He213
005 20191013150405.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 6 4 _a9783540896999
_9978-3-540-89699-9
024 8 7 _a10.1007/978-3-540-89699-9
_2doi
100 8 1 _aRoynette, Bernard.
_eauthor.
_9146366
245 9 7 _aPenalising Brownian Paths
_h[electronic resource] /
_cby Bernard Roynette, Marc Yor.
001 000065781
300 6 4 _bonline resource.
490 8 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1969
505 8 0 _aSome penalisations of theWiener measure -- Feynman-Kac penalisations for Brownian motion -- Penalisations of a Bessel process with dimension d(0 d 2) by a function of the ranked lengths of its excursions -- A general principle and some questions about penalisations.
520 6 4 _aPenalising a process is to modify its distribution with a limiting procedure, thus defining a new process whose properties differ somewhat from those of the original one. We are presenting a number of examples of such penalisations in the Brownian and Bessel processes framework. The Martingale theory plays a crucial role. A general principle for penalisation emerges from these examples. In particular, it is shown in the Brownian framework that a positive sigma-finite measure takes a large class of penalisations into account.
650 8 0 _aMathematics.
_98571
650 8 0 _aDistribution (Probability theory).
_98572
650 _aMathematics.
_98571
650 _aProbability Theory and Stochastic Processes.
_98574
700 8 1 _aYor, Marc.
_eauthor.
_9146367
710 8 2 _aSpringerLink (Online service)
_9146368
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783540896982
830 8 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1969
_9146369
856 _uhttp://dx.doi.org/10.1007/978-3-540-89699-9
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2009.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
516 6 4 _aZDB-2-LNM
999 _c65511
_d65511
942 _c05