000 02381nam a22004095i 4500
003 DE-He213
005 20191013150704.0
007 cr nn 008mamaa
008 100301s2009 gw | s |||| 0|eng d
020 6 4 _a9783540939139
_9978-3-540-93913-9
024 8 7 _a10.1007/978-3-540-93913-9
_2doi
100 8 1 _aMochizuki, Takuro.
_eauthor.
_9147693
245 9 7 _aDonaldson Type Invariants for Algebraic Surfaces
_h[electronic resource] :
_bTransition of Moduli Stacks /
_cby Takuro Mochizuki.
001 000065961
300 6 4 _bonline resource.
490 8 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1972
505 8 0 _aPreliminaries -- Parabolic L-Bradlow Pairs -- Geometric Invariant Theory and Enhanced Master Space -- Obstruction Theories of Moduli Stacks and Master Spaces -- Virtual Fundamental Classes -- Invariants.
520 6 4 _aWe are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case!
650 8 0 _aMathematics.
_98571
650 8 0 _aGeometry, algebraic.
_9147694
650 _aMathematics.
_98571
650 _aAlgebraic Geometry.
_9147695
710 8 2 _aSpringerLink (Online service)
_9147696
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783540939122
830 8 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v1972
_9147697
856 _uhttp://dx.doi.org/10.1007/978-3-540-93913-9
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2009.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
516 6 4 _aZDB-2-LNM
999 _c65691
_d65691
942 _c05