000 02954nam a22005175i 4500
003 DE-He213
005 20191014011323.0
007 cr nn 008mamaa
008 101109s2011 gw | s |||| 0|eng d
020 6 4 _a9783642162862
_9978-3-642-16286-2
024 8 7 _a10.1007/978-3-642-16286-2
_2doi
050 8 4 _aQA370-380
072 8 7 _aPBKJ
_2bicssc
072 8 7 _aMAT007000
_2bisacsh
082 _a515.353
_223
100 8 1 _aAndrews, Ben.
_eauthor.
_9170342
245 _aThe Ricci Flow in Riemannian Geometry
_h[electronic resource] :
_bA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /
_cby Ben Andrews, Christopher Hopper.
001 000069011
300 6 4 _aXVIII, 302 p. 13 illus., 2 illus. in color.
_bonline resource.
490 8 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2011
505 8 0 _a1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbecks Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Bȵhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument.
520 6 4 _aThis book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Bȵhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem.
650 8 0 _aMathematics.
_98571
650 8 0 _aGlobal analysis.
_917903
650 8 0 _aDifferential equations, partial.
_99614
650 8 0 _aGlobal differential geometry.
_99530
650 _aMathematics.
_98571
650 _aPartial Differential Equations.
_99616
650 _aDifferential Geometry.
_99532
650 _aGlobal Analysis and Analysis on Manifolds.
_917904
700 8 1 _aHopper, Christopher.
_eauthor.
_9170343
710 8 2 _aSpringerLink (Online service)
_9170344
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783642162855
830 8 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2011
_9170345
856 _uhttp://dx.doi.org/10.1007/978-3-642-16286-2
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
516 6 4 _aZDB-2-LNM
999 _c68741
_d68741
942 _c05