000 | 02954nam a22005175i 4500 | ||
---|---|---|---|
003 | DE-He213 | ||
005 | 20191014011323.0 | ||
007 | cr nn 008mamaa | ||
008 | 101109s2011 gw | s |||| 0|eng d | ||
020 | 6 | 4 |
_a9783642162862 _9978-3-642-16286-2 |
024 | 8 | 7 |
_a10.1007/978-3-642-16286-2 _2doi |
050 | 8 | 4 | _aQA370-380 |
072 | 8 | 7 |
_aPBKJ _2bicssc |
072 | 8 | 7 |
_aMAT007000 _2bisacsh |
082 |
_a515.353 _223 |
||
100 | 8 | 1 |
_aAndrews, Ben. _eauthor. _9170342 |
245 |
_aThe Ricci Flow in Riemannian Geometry _h[electronic resource] : _bA Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem / _cby Ben Andrews, Christopher Hopper. |
||
001 | 000069011 | ||
300 | 6 | 4 |
_aXVIII, 302 p. 13 illus., 2 illus. in color. _bonline resource. |
490 | 8 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2011 |
505 | 8 | 0 | _a1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbecks Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Bȵhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. |
520 | 6 | 4 | _aThis book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Bȵhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. |
650 | 8 | 0 |
_aMathematics. _98571 |
650 | 8 | 0 |
_aGlobal analysis. _917903 |
650 | 8 | 0 |
_aDifferential equations, partial. _99614 |
650 | 8 | 0 |
_aGlobal differential geometry. _99530 |
650 |
_aMathematics. _98571 |
||
650 |
_aPartial Differential Equations. _99616 |
||
650 |
_aDifferential Geometry. _99532 |
||
650 |
_aGlobal Analysis and Analysis on Manifolds. _917904 |
||
700 | 8 | 1 |
_aHopper, Christopher. _eauthor. _9170343 |
710 | 8 | 2 |
_aSpringerLink (Online service) _9170344 |
773 | 8 | 0 | _tSpringer eBooks |
776 |
_iPrinted edition: _z9783642162855 |
||
830 | 8 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2011 _9170345 |
856 |
_uhttp://dx.doi.org/10.1007/978-3-642-16286-2 _zde clik aquí para ver el libro electrónico |
||
264 | 8 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
336 | 6 | 4 |
_atext _btxt _2rdacontent |
337 | 6 | 4 |
_acomputer _bc _2rdamedia |
338 | 6 | 4 |
_aonline resource _bcr _2rdacarrier |
347 | 6 | 4 |
_atext file _bPDF _2rda |
516 | 6 | 4 | _aZDB-2-SMA |
516 | 6 | 4 | _aZDB-2-LNM |
999 |
_c68741 _d68741 |
||
942 | _c05 |