000 | 03263nam a22004935i 4500 | ||
---|---|---|---|
003 | DE-He213 | ||
005 | 20191014011805.0 | ||
007 | cr nn 008mamaa | ||
008 | 110112s2011 gw | s |||| 0|eng d | ||
020 | 6 | 4 |
_a9783642174049 _9978-3-642-17404-9 |
024 | 8 | 7 |
_a10.1007/978-3-642-17404-9 _2doi |
050 | 8 | 4 | _aQA251.3 |
072 | 8 | 7 |
_aPBF _2bicssc |
072 | 8 | 7 |
_aMAT002010 _2bisacsh |
082 |
_a512.44 _223 |
||
100 | 8 | 1 |
_aCampbell, H.E.A. Eddy. _eauthor. _9172243 |
245 | 9 | 7 |
_aModular Invariant Theory _h[electronic resource] / _cby H.E.A. Eddy Campbell, David L. Wehlau. |
001 | 000069253 | ||
300 | 6 | 4 |
_aXIV, 234 p. _bonline resource. |
490 | 8 | 1 |
_aEncyclopaedia of Mathematical Sciences, _x0938-0396 ; _v139 |
505 | 8 | 0 | _a1 First Steps -- 2 Elements of Algebraic Geometry and Commutative Algebra -- 3 Applications of Commutative Algebra to Invariant Theory -- 4 Examples -- 5 Monomial Orderings and SAGBI Bases -- 6 Block Bases -- 7 The Cyclic Group Cp -- 8 Polynomial Invariant Rings -- 9 The Transfer -- 10 Invariant Rings via Localization -- 11 Rings of Invariants which are Hypersurfaces -- 12 Separating Invariants -- 13 Using SAGBI Bases to Compute Rings of Invariants -- 14 Ladders -- References -- Index. |
520 | 6 | 4 | _aThis book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group. It explains a theory that is more complicated than the study of the classical non-modular case, and it describes many open questions. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchersan introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter. |
650 | 8 | 0 |
_aMathematics. _98571 |
650 | 8 | 0 |
_aAlgebra. _9160 |
650 | 8 | 0 |
_aGeometry, algebraic. _9172244 |
650 |
_aMathematics. _98571 |
||
650 |
_aCommutative Rings and Algebras. _913854 |
||
650 |
_aAlgebra. _9160 |
||
650 |
_aAlgebraic Geometry. _9172245 |
||
700 | 8 | 1 |
_aWehlau, David L. _eauthor. _9172246 |
710 | 8 | 2 |
_aSpringerLink (Online service) _9172247 |
773 | 8 | 0 | _tSpringer eBooks |
776 |
_iPrinted edition: _z9783642174032 |
||
830 | 8 | 0 |
_aEncyclopaedia of Mathematical Sciences, _x0938-0396 ; _v139 _9172248 |
856 |
_uhttp://dx.doi.org/10.1007/978-3-642-17404-9 _zde clik aquí para ver el libro electrónico |
||
264 | 8 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2011. |
336 | 6 | 4 |
_atext _btxt _2rdacontent |
337 | 6 | 4 |
_acomputer _bc _2rdamedia |
338 | 6 | 4 |
_aonline resource _bcr _2rdacarrier |
347 | 6 | 4 |
_atext file _bPDF _2rda |
516 | 6 | 4 | _aZDB-2-SMA |
999 |
_c68983 _d68983 |
||
942 | _c05 |