000 03263nam a22004935i 4500
003 DE-He213
005 20191014011805.0
007 cr nn 008mamaa
008 110112s2011 gw | s |||| 0|eng d
020 6 4 _a9783642174049
_9978-3-642-17404-9
024 8 7 _a10.1007/978-3-642-17404-9
_2doi
050 8 4 _aQA251.3
072 8 7 _aPBF
_2bicssc
072 8 7 _aMAT002010
_2bisacsh
082 _a512.44
_223
100 8 1 _aCampbell, H.E.A. Eddy.
_eauthor.
_9172243
245 9 7 _aModular Invariant Theory
_h[electronic resource] /
_cby H.E.A. Eddy Campbell, David L. Wehlau.
001 000069253
300 6 4 _aXIV, 234 p.
_bonline resource.
490 8 1 _aEncyclopaedia of Mathematical Sciences,
_x0938-0396 ;
_v139
505 8 0 _a1 First Steps -- 2 Elements of Algebraic Geometry and Commutative Algebra -- 3 Applications of Commutative Algebra to Invariant Theory -- 4 Examples -- 5 Monomial Orderings and SAGBI Bases -- 6 Block Bases -- 7 The Cyclic Group Cp -- 8 Polynomial Invariant Rings -- 9 The Transfer -- 10 Invariant Rings via Localization -- 11 Rings of Invariants which are Hypersurfaces -- 12 Separating Invariants -- 13 Using SAGBI Bases to Compute Rings of Invariants -- 14 Ladders -- References -- Index.
520 6 4 _aThis book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group. It explains a theory that is more complicated than the study of the classical non-modular case, and it describes many open questions. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchersan introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter.
650 8 0 _aMathematics.
_98571
650 8 0 _aAlgebra.
_9160
650 8 0 _aGeometry, algebraic.
_9172244
650 _aMathematics.
_98571
650 _aCommutative Rings and Algebras.
_913854
650 _aAlgebra.
_9160
650 _aAlgebraic Geometry.
_9172245
700 8 1 _aWehlau, David L.
_eauthor.
_9172246
710 8 2 _aSpringerLink (Online service)
_9172247
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783642174032
830 8 0 _aEncyclopaedia of Mathematical Sciences,
_x0938-0396 ;
_v139
_9172248
856 _uhttp://dx.doi.org/10.1007/978-3-642-17404-9
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
999 _c68983
_d68983
942 _c05