000 03333nam a22005415i 4500
003 DE-He213
005 20191014015757.0
007 cr nn 008mamaa
008 120530s2012 gw | s |||| 0|eng d
020 6 4 _a9783642256349
_9978-3-642-25634-9
024 8 7 _a10.1007/978-3-642-25634-9
_2doi
050 8 4 _aQA331-355
072 8 7 _aPBKD
_2bicssc
072 8 7 _aMAT034000
_2bisacsh
082 _a515.9
_223
100 8 1 _aBogatyrev, Andrei.
_eauthor.
_9187363
245 9 7 _aExtremal Polynomials and Riemann Surfaces
_h[electronic resource] /
_cby Andrei Bogatyrev.
001 000071313
300 6 4 _aXXVI, 150 p.
_bonline resource.
490 8 1 _aSpringer Monographs in Mathematics,
_x1439-7382
505 8 0 _a1 Least deviation problems -- 2 Chebyshev representation of polynomials -- 3 Representations for the moduli space -- 4 Cell decomposition of the moduli space -- 5 Abels equations -- 6 Computations in moduli spaces -- 7 The problem of the optimal stability polynomial -- Conclusion -- References.
520 6 4 _aThe problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev's approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmȭller theory, foliations, braids, topology are applied to approximation problems. The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.
650 8 0 _aMathematics.
_98571
650 8 0 _aFunctions of complex variables.
_911422
650 8 0 _aGlobal analysis.
_917903
650 8 0 _aNumerical analysis.
_9187364
650 8 0 _aEngineering mathematics.
_99629
650 _aMathematics.
_98571
650 _aFunctions of a Complex Variable.
_911424
650 _aApproximations and Expansions.
_912004
650 _aNumerical Analysis.
_9187365
650 _aGlobal Analysis and Analysis on Manifolds.
_917904
650 _aNumerical and Computational Physics.
_9187366
650 _aAppl.Mathematics/Computational Methods of Engineering.
_99631
710 8 2 _aSpringerLink (Online service)
_9187367
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783642256332
830 8 0 _aSpringer Monographs in Mathematics,
_x1439-7382
_9187368
856 _uhttp://dx.doi.org/10.1007/978-3-642-25634-9
_zde clik aquí para ver el libro electrónico
264 8 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2012.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
516 6 4 _aZDB-2-SMA
999 _c71043
_d71043
942 _c05