000 | 04023nam a22005655i 4500 | ||
---|---|---|---|
003 | DE-He213 | ||
005 | 20191014030959.0 | ||
007 | cr nn 008mamaa | ||
008 | 130228s2013 gw | s |||| 0|eng d | ||
020 | 6 | 4 |
_a9783642362163 _9978-3-642-36216-3 |
024 | 8 | 7 |
_a10.1007/978-3-642-36216-3 _2doi |
050 | 8 | 4 | _aQA252.3 |
050 | 8 | 4 | _aQA387 |
072 | 8 | 7 |
_aPBG _2bicssc |
072 | 8 | 7 |
_aMAT014000 _2bisacsh |
072 | 8 | 7 |
_aMAT038000 _2bisacsh |
082 |
_a512.55 _223 |
||
082 |
_a512.482 _223 |
||
100 | 8 | 1 |
_aMeinrenken, Eckhard. _eauthor. _9205306 |
245 | 9 | 7 |
_aClifford Algebras and Lie Theory _h[electronic resource] / _cby Eckhard Meinrenken. |
001 | 000073804 | ||
300 | 6 | 4 |
_aXX, 321 p. _bonline resource. |
490 | 8 | 1 |
_aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, _x0071-1136 ; _v58 |
505 | 8 | 0 | _aPreface -- Conventions -- List of Symbols -- 1 Symmetric bilinear forms -- 2 Clifford algebras -- 3 The spin representation -- 4 Covariant and contravariant spinors -- 5 Enveloping algebras -- 6 Weil algebras -- 7 Quantum Weil algebras -- 8 Applications to reductive Lie algebras -- 9 D(g; k) as a geometric Dirac operator -- 10 The HopfKoszulSamelson Theorem -- 11 The Clifford algebra of a reductive Lie algebra -- A Graded and filtered super spaces -- B Reductive Lie algebras -- C Background on Lie groups -- References -- Index. |
520 | 6 | 4 | _aThis monograph provides an introduction to the theory of Clifford algebras, with an emphasis on its connections with the theory of Lie groups and Lie algebras. The book starts with a detailed presentation of the main results on symmetric bilinear forms and Clifford algebras. It develops the spin groups and the spin representation, culminating in Cartans famous triality automorphism for the group Spin(8). The discussion of enveloping algebras includes a presentation of Petraccis proof of the PoincarȨBirkhoffWitt theorem. This is followed by discussions of Weil algebras, Chern--Weil theory, the quantum Weil algebra, and the cubic Dirac operator. The applications to Lie theory include Duflos theorem for the case of quadratic Lie algebras, multiplets of representations, and Dirac induction. The last part of the book is an account of Kostants structure theory of the Clifford algebra over a semisimple Lie algebra. It describes his ǣClifford algebra analogueǥ of the HopfKoszulSamelson theorem, and explains his fascinating conjecture relating the Harish-Chandra projection for Clifford algebras to the principal sl(2) subalgebra. Aside from these beautiful applications, the book will serve as a convenient and up-to-date reference for background material from Clifford theory, relevant for students and researchers in mathematics and physics. |
650 | 8 | 0 |
_aMathematics. _98571 |
650 | 8 | 0 |
_aAlgebra. _9160 |
650 | 8 | 0 |
_aTopological Groups. _99529 |
650 | 8 | 0 |
_aGlobal differential geometry. _99530 |
650 | 8 | 0 |
_aMathematical physics. _99251 |
650 |
_aMathematics. _98571 |
||
650 |
_aTopological Groups, Lie Groups. _99531 |
||
650 |
_aAssociative Rings and Algebras. _921561 |
||
650 |
_aMathematical Applications in the Physical Sciences. _933406 |
||
650 |
_aDifferential Geometry. _99532 |
||
650 |
_aMathematical Methods in Physics. _99252 |
||
710 | 8 | 2 |
_aSpringerLink (Online service) _9205307 |
773 | 8 | 0 | _tSpringer eBooks |
776 |
_iPrinted edition: _z9783642362156 |
||
830 | 8 | 0 |
_aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, _x0071-1136 ; _v58 _9205308 |
856 |
_uhttp://dx.doi.org/10.1007/978-3-642-36216-3 _zde clik aquí para ver el libro electrónico |
||
264 | 8 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
336 | 6 | 4 |
_atext _btxt _2rdacontent |
337 | 6 | 4 |
_acomputer _bc _2rdamedia |
338 | 6 | 4 |
_aonline resource _bcr _2rdacarrier |
347 | 6 | 4 |
_atext file _bPDF _2rda |
516 | 6 | 4 | _aZDB-2-SMA |
999 |
_c73534 _d73534 |
||
942 | _c05 |