000 02952nam a22004455i 4500
003 DE-He213
005 20191014041156.0
007 cr nn 008mamaa
008 110128s2010 sz | s |||| 0|eng d
020 6 4 _a9783764399092
_9978-3-7643-9909-2
024 8 7 _a10.1007/978-3-7643-9909-2
_2doi
050 8 4 _aQA641-670
072 8 7 _aPBMP
_2bicssc
072 8 7 _aMAT012030
_2bisacsh
082 _a516.36
_223
100 8 1 _aBaum, Helga.
_eauthor.
_9216919
245 9 7 _aConformal Differential Geometry
_h[electronic resource] :
_bQ-Curvature and Conformal Holonomy /
_cby Helga Baum, Andreas Juhl.
001 000075445
300 6 4 _aX, 152 p.
_bonline resource.
490 8 1 _aOberwolfach Seminars ;
_v40
520 6 4 _aConformal invariants (conformally invariant tensors, conformally covariant differential operators, conformal holonomy groups etc.) are of central significance in differential geometry and physics. Well-known examples of conformally covariant operators are the Yamabe, the Paneitz, the Dirac and the twistor operator. These operators are intimely connected with the notion of Bransons Q-curvature. The aim of these lectures is to present the basic ideas and some of the recent developments around Q -curvature and conformal holonomy. The part on Q -curvature starts with a discussion of its origins and its relevance in geometry and spectral theory. The following lectures describe the fundamental relation between Q -curvature and scattering theory on asymptotically hyperbolic manifolds. Building on this, they introduce the recent concept of Q -curvature polynomials and use these to reveal the recursive structure of Q -curvatures. The part on conformal holonomy starts with an introduction to Cartan connections and its holonomy groups. Then we define holonomy groups of conformal manifolds, discuss its relation to Einstein metrics and recent classification results in Riemannian and Lorentzian signature. In particular, we explain the connection between conformal holonomy and conformal Killing forms and spinors, and describe Fefferman metrics in CR geometry as Lorentzian manifold with conformal holonomy SU(1,m).
650 8 0 _aMathematics.
_98571
650 8 0 _aGlobal differential geometry.
_99530
650 _aMathematics.
_98571
650 _aDifferential Geometry.
_99532
700 8 1 _aJuhl, Andreas.
_eauthor.
_9216920
710 8 2 _aSpringerLink (Online service)
_9216921
773 8 0 _tSpringer eBooks
776 _iPrinted edition:
_z9783764399085
830 8 0 _aOberwolfach Seminars ;
_v40
_9216922
856 _uhttp://dx.doi.org/10.1007/978-3-7643-9909-2
_zde clik aquí para ver el libro electrónico
264 8 1 _aBasel :
_bBirkhuser Basel,
_c2010.
336 6 4 _atext
_btxt
_2rdacontent
337 6 4 _acomputer
_bc
_2rdamedia
338 6 4 _aonline resource
_bcr
_2rdacarrier
347 6 4 _atext file
_bPDF
_2rda
912 6 4 _aZDB-2-SMA
999 _c75175
_d75175
942 _c05